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A13STRACI’

The S-parameters of coupled, tapered rnicrostrip etches
are calculated as a function of frequency using an iteration-
perturbatiou technique. The propagation constants and
impedance matrices are computed using a perturbation-
iteration approach. Representative results are obtained to
illustrate the application of the method.

INTRODUCTION

Tapered microstrip lines are commonly used in VLSI
circuits for matching lines of different width and in routing
of lines from chip packages to board-level interconnects.

The tapered transmission line has been studied by
Hill and Mathews (1) and Rae, et al (2). In their
investigations, a quasi-TEM approach was adopted. An
accurate full-wave analysis of tapered lines has been
proposed by Mirshekar-Syahkal and Davies (3) using the the
method of coupled modes accompanied by the spectral
domain solution of uniform lines. However, finding the
eigenvalues of the normal modes for the uniform line is time
consuming and not convenient for computer-aided design.
Recently, Kretch and Collin (4) developed a numerically
efficient iteration-perturbation theory to study the dispersion
effect of the dominant propagating mode of a microstrip line.

In this presentation, we calculate the S-parameters of
a tapered microstrip line as a function of frequency using the
approach described in (4) for the uniform lines. Although
the coupled-mode method (3) could be used if the higher-
order modes were excluded, the impedance technique (5) is
adopted for programming simplicity.

PROCEDURE

The tapered microstrip line is analyzed by dividing
the line into small segments so that each segment can be
approximated as a uniform line. For each frequency,
starting with the static case, the effective dielectric constant,
sr,eff, is determined. This value is then used to compute the
characteristic impedance of that section of line and the S-
parameters are obtained using standard microwave analysis.
Next, the S-matrix is converted into a T-marnx, and since
the sections are cascaded, all T-matrices are multiplied to
derive a final T-matix. This fmd T-matrix is then converted
into an S-matrix, which is frequency dependent, and the
mismatch introduced by the taper is obtained from the S-
ma&ix.

The frequency-dependent effective dielectric constant
cr,eff is determined using an iterative approach described by
Kretch and Collin (4). We begin by computing the static
cr,eff and use it to obtain the potentials on the microstrip,
Next, a new er,eff is found for these potentials and the
procedure is repeated until the value of &r~ff converges. This
value is used to find the characteristic impedance, and the
initial estimate for er,eff at the next frequency increment.

THEORY

Transmission Line Theory

The tapered microstrip line is approximated by
dividing it into uniform sections. For each section, the S
parameters are calculated as defined by microwave network
theory.

22-21
Sll =-s22 =22 + ‘zI (1)

(2)

After the S parameters for the discontinuity are
calculated, the terminaf plane is translated through a distance
equal to the electrical length of the uniform section. This

amounts to multiplying each term by a phase shift of ei~l (5).
After the phase-shifted parameters are found, the S-matrix is
transformed into a T-matrix as follows:

Tll = Sll S21 - Sll S22

S21
(3)

Sll
T12 = ~ (4)

-s22
T21 = ~ (5)

1
T22 = ~ (6)

Next, a composite T-matrix is derived by forming the
product of all T-matrices to this point. This procedure is
repeated until all sections have been included. The final T-
matrix is then converted back into an S-ma@ix. For the three
line geometry, we treat the system as a six-port microwave
network, in which case equations (1) - (4) become matrix
equations.
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Frequency dependence enters into the elements of the
S-matrix in two ways. First, because the propagation
constant ~ varies with frequency, the electrical length by
which the terminal plane must be shifted differs for each
frequency. This can lead to different S-parameters for
different frequencies. Second, Q and er are functions of
frequency and contribute to the frequency dependence of the
S-matrix.

Potential Theory

The er,gff and ~ for the single line is computed using
the procedure m (4). The effective dielectric constant for the
three-line geometry shown in Figure 1 can be found by
using the same potential theory. The current distribution
Jz(x) and charge distribution p(x) for each line are expanded
into basis functions, and the Green’s function is determined
for the given geometry. We start by assuming a uniform
potential on each strip, which in general consists of three
different potential distributions corresponding to three
different modes: two even and one odd. Jz(x) and p(x) must
be expanded in terms of suitable basis functions for each
mode. The Green’s function, however, remains the same
for all three modes. But it can be separated into an even and
an odd part, of which only one part is needed for each mode.
The integral equations for the potentials are then derived for
each mode and are converted into matrix equations using the
method of moments. The matrix equation is then solved for
the coefficients of the basis functions. These coefficients are
used to determine the current and charge densities, which
enables us to find the total current IT and total charge (&on
each conductor. We then find the effective dielectric
constant er,eff for each mode by tinding the eigenvalues of

the matrix QI-l.

Using this cr,eff, we can find a new estimate of the
potentials on the strips, which allows us to add a
perturbation term to the right hand side of the integral
equation to account for the current in the x direction. We
then solve the equations again using the new estimate of the
potential distribution. The procedure is repeated until
successive values of er,eff do not change by more than
0,1 %, at which point we step to the next frequency.

RESULTS

Single Line

The procedure described above was tested by finding
the reflection coefficient for the single-line taper shown in
Figure 2. The nominal value of &r varied from 1.0 to 12.9,
and the results were obtained for both the frequency
dependent Er,eff and er,eff derived under the static
approximation (marked by an x on the graph). In all cases,
the taper was linear with a length of 1 cm., but the procedure
can be used with any arbitrmy shape and length. The results
are shown in Figures 3 through 8. Note that the reflection
coefficient is plotted on a log scale, and the frequency
dependence affects the position of the minimums more than
the magnitude of the reflection coefficient.

Three Lines

time. The quasi-static current distributions for each mode
are shown in Figures 9 through 12.

For the three tapered microstrip lines, the S-matrix
for the coupled lines becomes a six-port network. The major
difference from the one-line case comes from the way the
effective dielectric constant is evluated for the multiline
system. The potential theory described above accounts for
the neighboring lines and for the possibility of even and odd
modes.

CONCLUSIONS

A perturbation-iteration method for determining the
S-parameters of three tapered microstrip lines based on
potential theory has been presented. Representative results
are obtained to illustrate the application of the method for a
single tapered line. This method appeam to be well-suited
for efficient evaluation of the mismatch effect of tapered
etches on digital pulses.
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The propagation constants for a uniform three line
structure was determined. A comparison with the
propagation constants obtained by spectral Galerkin
procedure (6) are shown in Table 1. The values differ by
less than 0.5%, and this procedure required less computation
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Figure 1. Cross section of three-line microstrip
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Figure 2. Tapered Microstrip Line

TABLE 1

Comparison of Propagation Constants

This Method M

50.71 50.53

57.92 58.12

52.98 52.80
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Figure4. Linear taper, er=2.2,1ength=l cm.
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Figure 3. Linear taper, &r= 1.0, length = 1 cm.
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Figure 5. Linear taper, Er = 5.12, length = 1 cm.
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Figure6. Linear taper, cr=9.4,1ength=l cm.
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Figure7. Linear taper, er=ll.8, length=l cm.
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Figure8. Linear taper, er=12.9, length=l cm.
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Figure9. C!urrent distribution for(l,l,l) mode
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Figure 10. Current distribution for (1,0,1) mode
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Figure 11. Current distribution for (-1,0,1) mode
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